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Structure Factor Relations and the Phase Problem

By W. CocrRAN
Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England

(Received 3 February 1958)

A method for deriving equality relations between structure factors is described, and the conditions
under which the results are valid are discussed. It is pointed out that most such relations require an
amount of data much greater than the minimum necessary for structure determination. It is con-
cluded that, for a crystal structure of a specified degree of complexity, no routine procedure has yet
been devised which will enable the structure to be determined from the X-ray intensities alone.
Conditions which are sufficient to exclude the possibility of a structure having a ‘homometric

mate’ are given.

1. Introduction

In recent papers Hauptman & Karle (1957) and
Karle & Hauptman (1957) have described a ‘unified
algebraic approach to the phase problem’. This has
enabled them to derive new relations between the
structure factors, for the particular case of a structure
containing N equal atoms per unit cell. These rela-
tions, and others, can be derived by what might be
called a ‘Fourier transform approach to the phase
problem’. This approach has the advantage of showing
quite clearly the conditions under which the relations
are valid, and here our conclusions are not identical
with those of Karle & Hauptman. The question of the
extent to which the relations can be used for the prac-
tical determination of crystal structures is more
difficult to answer, but the approach given here
throws some light on it. Some conclusions are also
reached about the conditions under which a structure
is uniquely determined by its structure amplitudes.

2. Results from Fourier transform theory

We consider a distribution g(r) consisting of N points
of weights W,, ..., Wy at r,...ry, repeated by an
infinite lattice. That is, the distribution in one unit
cell is given by

N
o(r) = Zleé(r—rf), (2-1)
j=

where §(r) is a Dirac function. We also define

N
F(h) = 3 W;exp [2mir;.h], (2-2)
=1

and we shall refer to o(r) and F(h) as Fourier trans-
forms of one another, a relationship denoted by

o(r) Z F(h).

(Strictly speaking, it is the continuous structure
factor which is the transform of g(r).) We now state
the following theorem:

If
S W;o(r—rs) 2 Fy(h)
and ’ ,, I
2W; 0(r—ry) < Fy(h), (2-3)
then

7
2_" W;W,f'é(r—rj) Z<F1(k)Fz(h_k)>k; I
j

where { )y denotes an average over an infinite range.
It should be noted that the points involved in the third
relation are those which are common to the first two,
since, if any W’ or W' is zero, a term disappears
from the left-hand side of the third relation. The
proof of (2-3) is given in a later section.

Two other useful results which are readily proved
are that, with

2 Wjé(!‘-l‘j) g F(h) N
j

then 3 WW;0(r—(re—17) Z [F (D)2, (25)
%7
T IWW (- (ri—1y) 2 [F(M)EP-Z W?, (2:5a)
LE ] j
and also

S (Wscos 2anH.ry)d(r—r5) Z 3(F(h+H)
! +F(h—H)). (2:6)

3. Derivation of some typical equalities

As an example of the application of the results given
in the last section, we consider the derivation of certain
equations given by Karle & Hauptman (1957). These
equations are written in terms of a quantity Z(h),
related to our F(h) by

E(h) = F(h)/(X W}, that is, B(h) = N-1F(h) when

7
all W’s are unity. In our notation these equations
become

F(h) = (FK)F(h—K))y ,
F(h) = {(F(k)~N)F(h—2K))y ,

@1
3-2)



580
IP()E—N = ((F&)E-N)(IF(h-K)E—N))y, (3:3)
|F (b + H)F(—h+ H)F(~2H)| c0s (ghym+P-nin+@_sm)
- K(F (k+H)]2—N)(|F (k—H)[*~ N)
x ([F (h+K)[2—N)yye+ (1 (h-+ H)[2+ | P (h — H)J2
+|F@2H)P—2N),

where

(3-4)
F(h) = |F(h)| exp [igs] .

The first relation holds for both centrosymmetric and
non-centrosymmetric structures, the second only for
centrosymmetric and the third and fourth only for
non-centrosymmetric structures.

To derive (3:1) we put F,(h) = Fy(h) = F(h) in
relation (2-3), giving

S Wis(r—r;) Z{F(K)F(h—K))y . (3:5)
7

Comparing this with the relation defining F(h) itself,
2 W;id(r—r;) Z F(h), we see that if all W; =1,
7

relation (3-1) follows immediately. A necessary and
sufficient condition for the truth of (3-1) is (aside
from W =1, and remembering that { )y is an aver-
age over an infinite range)

r;—r; £ 0. (3-7)

(We shall always take this to include the condition
r;—r; = t, where t is any lattice translation.)

The basis of (3:2) may be understood by writing
it as

F(h) = ((FPGk)-NF(h—K)y . (3-20)

Since the structure is centrosymmetric, r; = —ry_;,
and the Fourier transform of #%(h) will include peaks
at 2r;; in fact

F2(h)-N Z I Wi(r—2ri) + Z2W: W;8(r — (rs—1y)) ,
U ]

(3-8)

If in the relation (2-3) we now take F,(h) = F2(3h)—N

and Fy(h) = F(h), we see that (3-2a) depends on the

fact that the transforms of F,(h) and F,(h) have
common points at r,, ..., ry, and that

(F2(3K)—N)F (h—K)py & fo' Wid(r—r;). (3-9)

Taking all W; =1, relation (3:2a) follows. The con-
ditions for the validity of this result are those we have
already met, together with
2r;—(rp—Tn) £ 0. (3:10)
This last condition ensures that there are no accidental
coincidences of points in the second term of (3-8)
with points in the first term. If in (3-10) we take
m = N—n, we see that it includes the condition
2(r;—rm) + 0, and if we now take ¢ = N—m, we see
that 4r; = 0 is also included. Remembering that this

STRUCTURE FACTOR RELATIONS AND THE PHASE PROBLEM

is meant to include 4r; == t, we see that such special
positions as (4, 0,0), (%, 1, ), etc. must not be occu-
pied. These conditions are all included in (3:10), or
in the statement that all the points 2r; of the vector
set are to be resolved from one another, and from
points rn—Tmn.

The result (3-3) can be derived immediately by
putting F,(h) = Fy(h) = [F(h)?*-~N in (2-3). The
conditions for exact validity are found to be (3-7),
plus the condition.

(Cn—tm)—(rp—1Tg) + 0, (3:11)

or simply that all points of the vector set are to be
resolved from one another (and of equal weight). The
condition deduced by Karle & Hauptman (1957,
footnote to p. 156) is more restrictive, being

A(rp—rp)+B(rp—ry) + 0, (3-12)

where 4 and B are any integers. As a check, we
calculated values of |F|2—N for a one-dimensional
structure with

- .1 _ 5 _
=0, r,=% r3=1 ra=1%.

Condition (3-11) is satisfied, (3:12) is not, but it was
verified by numerical calculation that (3-3) is valid.

The derivation of relation (3-4) is given in Ap-
pendix I, and it is shown that it is valid provided that

(ri—1) —{(tn—Tm)—(rp—1)} +0.  (3:13)

In a discussion of the probability of the correctness
of certain statistical relations between structure fac-
tors, Klug (1958) found it useful to define an ‘order’
for each relation. On this definition, (3-1), (3-2), (3-3)
and (3-4) are respectively of order 3,4,5 and 7. We
see from conditions (3-7), (3-10), (3-11) and (3-13)
that the order of each equality is one more than the
number of independent atomic positions involved in
each condition.

4. The effect of averaging over a limited range

In practice the range of k over which averages can
be taken is restricted. From Fig. 1 we see that the
condition for both vectors k and h—k to lie inside
limiting spheres of radius Sy, is that k should lie inside
the volume whose projection is shaded in the diagram.
Now

(Fi(k)Fa(h—~K))y = ((Z W; exp [2nir;. K])
j
x(Z W, exp [2nit;. (h=K)]))i, (41)
i

where ( )i denotes an average over this limited range
of k. Transferring the origin from O by’ a distance }h,
and introducing a new coordinate in reciprocal space,
u = k—}h (see Fig. 1), we find, since k = th+u and
h—k = th—u, that
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Fig. 1. The two spheres in the diagram each of radius Sy,
have their centres separated by a distance h. The condition
that both |k| and [h—k| should be less than &, is that k
should lie inside the volume common to the two spheres.

(Fy(K)Fp(h—K))y = (%‘ WW; exp [2mir;.h]),

+{(Z W;W; exp [mi(ri+1y). h] exp [27i(rs—15).ul), ,
i]

(4-2)
that is,

(Fi(K)Fy(h—Kk)) = 3 W;W;' exp [2nir;.h]

i
+ 3 W;W; exp [ni(r:+rs). h]{exp [2i(ri—rys). ul), .
i (4-3)

For an infinite range of u, the second term on the
right vanishes and we have the result given earlier as
(2:3). When the range of u is finite, we have an ad-
ditional contribution from every point %(r¢+r;), the
magnitude of the contribution depending on (r;—ry),
and decreasing as this separation increases. This con-
tribution depends explicitly on

f(ri—r5) = {exp [27i(ri—15).ul)y

= {C(u) exp [2rmi(r;—rs).u]),, (4-4)
where C(u) = 1 inside the shaded region of Fig. 1,
but is zero outside. Relation (4-4) will be seen to
express the fact that f(r;—ry) is the Fourier transform
of the function C(u). Now this function has a width
in any direction of about 8,, so by the well known
reciprocal relation between the widths of a function
and its transform, f(r;—r;} must fall nearly to zero
in a distance of about Sy!. This can be confirmed for
small values of h, for then f(r;—ry) is given explicitly

by
f(ri—ry)

3 (Sil‘l 2n|ri—r,[So—2n|ri—r;|SO cos 27t]l‘1;—l‘j]SO)
(27|rs—145)* \

(4-5)

For greater values of h, f(r;—r;) spreads out and is
no longer spherically-symmetrical, but for & < 8, it
will not differ greatly from the result given as (4-5).

581

We now apply this result to the case F;(h) =
Fy(h) = F(h), taking all W; = 1. We find, using the
above results, that

(F(k)F (h—k))y
= F(h)+ % f(re—1y) exp [mi(ri+1s).h] . (46)
g

The condition for the second term to vanish is that all
f(rs—rs) should be negligible, which will be true if

|ri—x;| & S5 (4-7)

This replaces the condition (r;—rs) = 0. It is readily
shown that a corresponding change has to be made to
other conditions such as (3-11), which becomes
[(tr—Tm)— (rp—Tg)| S Sg?, for example.

The interpretation of condition (4:7) in terms of
functions in crystal, as opposed to reciprocal, space is
evident. When the range of h is infinite, each atom in
an electron-density map whose Fourier coefficients are
F’s as defined in § 2, is represented by a é-function,
and (r;—r;) =0 requires the J-functions not to
coincide. When the range of h is restricted to a sphere
of radius S,, each atom is represented by a peak of
width ~ S5, and (4-7) requires such peaks to be
resolved from one another. We therefore come to
appreciate that, for example, the exact validity of (3-3)
depends on the complete resolution of all peaks in the
Patterson function.

5. Some further equality relations

By successive applications of (3-1) it may be shown
that
Fh)=(F(k)F(1-K)F(m-1)...F(h—m))x,1,...,m -
(5-1)
There are similar results corresponding to (3-2) etc.
From the results (2-5¢) and (I-9) it is readily shown
that
|F(h)[2—N = 2(N —1X(|F(k)2~N)(|F (h—Kk)?—N)%y..
(5-2)
From (I-5), (I-6) and (I-10) we find that
|F(h+H)F(~h+H)F(—2H)
x |cos (@nru+P-niut @—on)—|F(2H)?
= K{(F (k+H)]?-N)(|F (k—H)[]>—N)— (2N -8)
x (|F(k+H)2+|F(k—H)]2—2N)}

« {|F(h—Kk)*— N} . (5:3)

Equality relations can be found even when the atoms
of the structure are unequal. For example, corre-
sponding to (3-2),
(F(R)F (1-K)F (h—1))k,1
= {(F2(K)=2ZW)(F(h—2K))y . (54)

Suppose the atoms of a structure are equal, the
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structure is centrosymmetric and the position of any
one atom is known, say r,, then it can be shown that

F(h) = I{(F*(k)—N+4)(F2(h—k)—N+4)
x¢os 2zr;. (h—2K)>, . (55)
Since this result holds for any ry, it follows that

F(h) = — ((FX(K)— N+4) (F(h—k) - N +4)

4N
xF(h—2K)) . (56)

If the structure is non-centrosymmetric, then, pro-
vided that the origin is chosen to coincide with an
atomic position,

Fh) = (F&)P-N+)F(h-K)p.  (57)
If the origin is chosen midway between atoms 1 and 2,
and the separation r,—r, = 2r, is known, it can be
shown that

2(|F (h)|cos pp—cos 4ar; . h)
= {(|F(K)P—N+1)(|F(h—k)|2—N +1) cos 4nr, Ky .
(5-8)

If the coordinate of a third atom relative to this
origin, ry, is known it can be shown that

F(h) = 2{(|F (k)| cos gy —cos 4zr,.k)
x (|F(h—k)[2—N+1) exp [2miry. (h—K)]y . (59)

Proofs of the results from (5-5) onwards will not be
given; they have at most a curiosity value. Their
physical basis will be pointed out in the next section.

6. The Patterson-function aspect of
structure determination

It was shown by Wrinch (1939) that in general a set
of points can be recovered from its vector set. We shall
consider first in this section a structure (set of points)
whose space group is P1; the atoms may be unequal
and we need not know their weights or the value of N.
We suppose, however, that all points of the vector
set: are resolved,
(Tn—Tm)—(rp—rg) + 0. (6-1)
In the vector set we look for three points at vy, v,
and vz such that vy = v,—v,. The identification of
three such points, with their weights, fixes the weights
and relative coordinates of three points of the struc-
ture, or of its enantiomorph, for we can assume that
V; =TIij=Ij, Vo =T;—Tg, V3 =T;—Tg.
An incorrect identification is impossible if (6-1), and
the following condition, are always satisfied:

(ri—1s)—{(tn—Tm)— (rp—1q)} £ 0. (6-2)
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These three points, in their correct relative positions,
are then moved over the vector set until a triple
coincidence is found with three points of the vector
set whose weights are in the same ratio as those of the
first three of the structure. This serves to fix the
weight and relative position of a fourth point of the
structure. A false indication is not possible if con-
ditions (6-1) and (6-2) are satisfied. The coincidence-
seeking process is then repeated with these four points
until a fifth has been found, and so on. This process
is essentially the same as was described by Wrinch
(1939) and Buerger (1950, 1951). It is mentioned here
in order to show that the conditions which ensure
success for the method, are the same as those given in
§ 3, and which ensure the success of phase-determining
relations. The considerations of the present section
show that these geometrical conditions are the same
whether the points (atoms) are equal in weight or not.
In particular, if conditions (6+1) and (6-2) are satisfied,
a structure whose space group is Pl (whether com-
posed of equal atoms or not) can have no homometric
mate other than its enantiomorph. These conditions
are contained in the one deduced by Karle & Haupt-
man (1957), but are less restrictive. While (6:1) and
(6-2) provide sufficient conditions to exclude a homo-
metric solution, they are clearly not necessary con-
ditions. Neither will their occasional failure be a
serious bar to the determination of a crystal structure
by a routine procedure. This is clear from the point of
view of Patterson-function methods when we re-
member that there are so many ways in which the
first three points, r;, rj, ry, of the above method can
be chosen. Even if they are at first incorrectly iden-
tified because of a failure of (6:2), the coincidence-
seeking process is not likely to proceed much beyond
this stage, and a fresh start would be made with three
other points. The real limitation of course lies in the
contrast between a vector set of points, in terms of
which the discussion has been conducted, and the
Patterson function which can be obtained in practice.
This is simply another aspect of the point discussed
in § 4.

When the space group is PI, the structure can be
recovered from its vector set by the ‘single super-
position method’ of Clastre & Gay (1950a, b). For the
process to be free from ambiguity, condition (6-1) is
required, together with

2r;—{(Ta—Tm)— (Tp—Tg)} + 0. (6-3)
This method of Clastre & Gay, expressed in terms of
operations in reciprocal space, leads to (5-5). The same
process, applied in a situation where the space group
is P1, leads to (5-8). Their ‘double superposition
method’ for the determination, from its vector set,
of a structure whose space group is P1, leads to (59).

A structure whose space group is P1, and for which
conditions (6-1) and (6-3) are satisfied, can have no
homometric mate.
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7. The amount of data required for direct
structure analysis

For simplicity the discussion in this section will refer
to a structure whose space group is P1, and which is
composed of equal atoms. The conclusions, however,
are quite general in their application. Suppose the
structure is to be determined using equality relations
such as

F(2h) = 2(F2(h)~N)—((F2(k)—N) (F*(h—k) - N))y .
(7-1)

to determine certain signs from measured intensities,
followed by the use of

F(h) = {(FP2(k)—N)F(h—2k)),  (72)

and

F(h) = (F(k)F(h—k))y . (73)
The relation (7-1) has been derived in terms of the
Fourier transforms of both sides of the equation in an
earlier paper (Cochran, 1954); it is readily shown to
be exact provided that

|2ri— (rn~1m)| S 85",

that is, it requires certain peaks in the Patterson
function (those between atoms related by the centre
of symmetry) to be resolved from the others.

If the data available are contained within a limiting
sphere of radius S, the number M of structure
amplitudes (magnitudes of structure factors) is given
by

M = (4/3)nS3V, (7-4)
where V is the unit-cell volume. The width of a peak
in the Patterson function (whose coefficients are values
of |F|2, as defined in this paper) is then of the order
871, and for maxima to be even approximately re-
solved from one another we require (since there are
approximately N2 separate peaks)

VIN? ~ S53, (7-5)
which, combined with (7-4), requires
M ~ (4/3)aN> (7-6)

Relations of higher order require an amount of data
involving a higher power of N. This provides us with
an estimate of the data required to determine a struc-
ture by a routine procedure, whether based on
Patterson-function methods or sign-determining rela-
tions makes no difference. This conclusion, based on
(7-6), has also been reached by Vaughan (private
communication), to whom I owe the idea.

The conclusion appears at first to contradict the
result of Hauptman & Karle (1950), who showed that
the problem of determining 3N atomic coordinates is
in general completely determinate when M = 3(N—1)
independent structure amplitudes are known. There
is, however, no contradiction; relations of the lowest
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order (which is three) require the minimum amount
of data. For example, relation (7-3) is valid as soon as

Irs—r;] ¥ 857, (7°7)

it merely requires the atoms to be resolved from one
another. This is the case as soon as V/N ~ S5® (7-8),
i.e., when

M ~ (4/3)nN . (7-9)
This is close to the Hauptman & XKarle value. We
therefore conclude that if a structure is to be deter-
mined from the minimum amount of data, only rela-
tions of lowest order (see § 3) can be used. These
depend on relations between the electron density and
powers of the electron density, for example (7-3)
expresses a relation between g and g?, (5-1) expresses
a relation between p and any power of g. It has been
shown by Woolfson (1958) that similar relations can
be found when the atoms are unequal. Those equalities
which give signs of structure factors directly from
intensities inevitably involve relations between ¢ and
the Patterson function P, or between @ and P?, or
between ¢ and the product oP etc. For their exact
validity they therefore require more than the minimum
amount of data. Unfortunately there is no way as yet
in which an equation such as (7-3) can be solved by a
routine procedure, although for fairly simple struc-
tures something approaching this can be done (Sayre,
1952; Cochran & Penfold, 1952).

The number of X-ray intensities measurable in
practice increases roughly in proportion to N, since
V is approximately proportional to N. For organic
compounds, for example, one finds (neglecting hy-
drogens) that V=12N, where V is in A3, The range
of measurement seldom extends as far as S, = 2 A~L
It may therefore be concluded that the limit of struc-
ture determination by Patterson-function methods, or
by methods based on equality relations of order
greater than three, is reached when

(4/3)7(2)*x 12N ~ (4/3)nN?, or N a 100.

The situation is of course completely altered if a few
atoms are of much greater weight than the others,
as the Patterson function may then contain recogniz-
able features. The estimates we have made are if
anything too generous, and the figure N = 100 may
well be too great by a factor of four when the atoms
are equal, or nearly so.

APPENDIX I
Proof of the relation
|F(h+H)F(—h+H)F(—2H)| cos (pn+n+ P-h+u+P—2n)
= K(P(k+ H)J2—N) (F (k— H)2—N)
% (|F(h+K)[2— )i
+(|F(h+H)2+|F(h—H)]2+ |F(2H)|?>-2N). (I'1)

We write P for the quantity occurring on the left-
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hand side. We regard H as a constant, and note that
since P is a structure invariant we can choose an
origin so that geg = 0. F(2H) is then real and posi-
tive, and we have

P = F@H)|F(—h+H)F(h-+H)lcos (p_nm-+ gusm) -

(I-2)

We then make use of the general result

$(F1Fy+ FYFY) = |FiFylcos (@1+@,)

to obtain

P = }F2H){F*(h—H)F (h+H)+F (h—H)F*(h+H)},

or

P — {F@H){|F (h+H)+F(h—H)?

~(IF(h+H)P+|F(h—H)P)}.  (I3)

Using general results given earlier, and taking the
atoms to be equal from the outset, we find that
|F(h+H)+F(h—H)]2—-2(N-+F(2H)) &

4 2 (cos 2nH.r; cos 2zH. 1;)0(r — (r;—13)), (I-4)
%)

and that
|[F(h+H)|2+|F(h—H)|2—2N &
2 2 (cos 2aH. (r;—r;)0(r— (r;—13)) .
i]

Multiplying both sides of (I-4) and (I:5) by 4F(2H),
subtracting one from the other, and making use of
(I-3), we obtain

(I-5)

P—F2(2H) Z 3 (F(2H) cos 27H.(r;+13))

i+]

’ 8(r~(ri-ty)), (I'6)
where P is given by (I-3) or (I-2).

Next we consider the function

2(|F (h+H)]?—N)(|F (h~H)]*-N)
= {(F(b+H)~N)+ (|F(h—H)2— N)}2
~{(F(h+H)P—N)*+ (|F(h—H)P-N)3)
= @Q—R, say. (17)
Both terms @ and R are obviously related to
(|[F(h)]2—N)2; in fact the transforms of all three
consist of J-functions at the same points
I = (Fp—Tm)—(p—Ty), (I8)
which are the points obtained by forming the vector
set of points r;, 1 =1, ..., N, subtracting the peak
at the origin, and then forming in turn the vector set
of this vector set. Certain points of this vector—vector
set coincide with points r;—r; of the vector set, for
example in (I-8) take m = ¢, n = ¢ and p = j. As we
shall see later, it is with these points only that we are
concerned,
It is found that
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(IF (02N 2 3 2(N~2)5(r— (ri—17))
+ other terms, not aft?: Jpoints of the vector set. (I-9)
Similarly,
Q<2 (4F (2H) cos 27H. (r;+15)

kg
+ (4N —16) cos 27H. (r;—r;)) 6(r — (13 —ry))

+ other terms , (I-10)
and
RZ X 4{N—-2) cos 27H. (r;—r;)d(r — (ri—ry))
i + other terms , (I-11)

so that, subtracting R from @ and multiplying by %,
$(IF(h+H)]P—N)(|F (h—H)]2-N) 2 3 (F(2H)
i

xcos 2H. (rs-+15)—2 cos 2zH. (ri—1y))

x&(r—(ri—ry)) + terms not at (r;—r;). (I-12)
Now we also have
|F(h)2—N 2 X 8(r— (r—17)),
o with no other terms. (I:13)

Therefore, from our central theorem (2-3)

$(F(k+H)P—N)(|F(k—H)|*—N)(|F (k—h)[2—N)),

< 3 (F(2H) cos 2xH. (r;+r1;)—2 cos 27H. (r;—ry))
i%]
xO(r—(r;—ry)) . (I-14)
The conditions for this result to be rigorously true are,
first that (I-13) should be correct, which, as before

requires
rp—Im =0
(Tn—Tm)—(rp—Tg) %= 0,

(n, m different) ,
(n, m, p, q¢ all different),

and that no point of the vector-vector set should
accidentally coincide with a point of the vector set, i.e.

(ri—T7)—{(Cn—Tm)— (Tp—Tq)} + 0

(i, 4, n, m, p, g, all different) . (I-15)

From (I-14), and making use of (I-5), we have

(P (k+H)[2—N)(IF (k—H)P— N)(|F (h-+ K)[2— N)}y
+(|F(h+H)]*+|F(h—-H)?*-2NZ X (F(ZH)
(3]

x cos 2H. (r;-+15))0(r— (r: —13)) . (I-16)
But from (I-6), the right-hand side of (I-16) is also
the transform of P—F2?(2H). Hence, on rearranging
terms, we have proved (I-1). The conditions for the
truth of (I'1) are therefore those given as (I-15).

References

BUERGER, M. J. (1950). Acta Cryst. 3, 87.
BUERGER, M. J. (1951). Acta Cryst. 4, 531.



W.COCHRAN

CLASTRE, J. & Gay, R. (1950a). C. R. Acad. Scti., Paris,
230, 1976.

CLASTRE, J. & Gavy, R. (1950b). J. Phys. Badium, 11, 15,

CocHrAN, W. (1954). Acta Cryst. 7, 581.

CocrrAN, W. & PENFOLD, B. R. (1952). Acta Cryst. 5,
644.

HauveptmaN, H. & KARLE, J. (1950). Acta Cryst. 3, 478.

Acta Oryst. (1958). 11, 585

585

HavuptmanN, H. & KARLE, J. (1957). Acta Cryst. 10, 267.
KARLE, J. & Hauprman, H. (1957). Acta Cryst. 10, 515.
Krue, A. (1958). Acta Cryst. 11, 515.

Sayre, D. (1952). Acta Cryst. 5, 60.

Woorrson, M. M. (1958). Acta Cryst. 11, 277.
WrincH, D. (1939). Phil. Mag. 27, 98.

Extinction Effects in Neutron Scattering from Single Magnetic Crystals*

By WaLTeEr C. HAMILTON

Chemistry Department, Brookhaven National Laboratory, Upton, Long Island, New York, U.S.A.

(Received 2 December 1957)

Results arising from the treatment of magnetic scattering of neutrons, taking due account of the
possibility of polarization of the neutron beam, indicate that the usual expressions for primary
and secondary extinction must be modified in certain cases. Extinction, particularly primary
extinction, will be generally more severe for reflections which have both nuclear and magnetic
contributions than for either pure nuclear or pure magnetic reflections. Formulas and curves are
presented for primary and secondary extinction corrections which are applicable to both mag-
netized and unmagnetized ferromagnetic or antiferromagnetic crystals. Some of the results obtained
may be conveniently used to determine relative amounts of primary and secondary extinction,
and consequently both mosaic block size and angular distribution. Many of the calculations are of
interest in predicting the effects of extinction on experiments designed either to produce or use
polarized neutron beams.

The precession of the neutron polarization axis about the magnetic axis can affect the reflected
intensity if extinction is severe. This effect is discussed briefly and is shown to be serious only for
magnetized crystals.

The appendix discusses the necessary changes in the scattering formulas if all the spins in the
unit cell do not lie along a unique magnetic axis.

Introduction

In a recent paper (Hamilton, 1957) the author has
discussed secondary extinction corrections for crystals
of arbitrary geometrical cross-section. In the example
which was chosen to illustrate some of the points
discussed in that paper—a synthetic single crystal of
magnetite which showed particularly severe extinction
—it, was noted that several of the reflections which
had large magnetic contributions did not give as good
a fit to the extinction curves as did the pure nuclear
reflections. An empirical extinction curve was found
to give a satisfactory fit to the observed intensities of
the nuclear reflections, but the intensities of many of
the mixed reflections were considerably lower than
this curve would predict. This lowered intensity could
not be accounted for by any reasonable changes in
the parameters describing the magnetic structure, nor
in the form factor and saturation curves. Preliminary
considerations indicated that this behavior could be
explained by a combination of polarization and ex-
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tinction effects, and the present paper is a detailed
elaboration of that point of view.

Following Halpern & Johnson (1939), we may write
the wave function for the incident neutron beam as

wo = (2 M o[hk)} exp [tKk.r]ys, (1)

where k is the wave vector 2aP/A with P the neutron
momentum, r is a position vector, M is the neutron
mass, and ys is the neutron spin function. The scat-
tered wave from a single oriented magnetic ion may
then be represented by

vr = (27Mo[hk)tr— exp [ikr](b+pQ.-8)xs»  (2)
provided that there is no change in the spin state of
the scattering ion. The nuclear and magnetic scat-
tering amplitudes are given by b and p respectively
with p defined as

p = (EyaS/mc)f . (3)

Here y, is the neutron magnetic moment in nuclear
magnetons, S is the spin of the scattering ion, m is
the mass of the electron, f is a form factor, and ¢ and e



