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A method for deriving equality relations between structure factors is described, and the conditions 
under which the results are valid are discussed. I t  is pointed out that  most such relations require an 
amount of data much greater than the minimum necessary for structure determination. I t  is con- 
cluded that,  for a crystal structure of a specified degree of complexity, no routine procedure has yet 
been devised which will enable the structure to be determined from the :X-ray intensities alone. 
Conditions which are sufficient to exclude the possibility of a structure having a 'homometric 
mate '  are given. 

1. I n t r o d u c t i o n  If  

In  recent papers H a u p t m a n  & Karle  (1957) and 
Kar le  & H a u p t m a n  (1957) have described a 'unified 
algebraic approach to the phase problem'.  This has 
enabled them to derive new relations between the 
structure factors, for the par t icular  case of a structure 
containing N equal atoms per uni t  cell. These rela- 
tions, and others, can be derived by what  might  be 
called a 'Fourier  t ransform approach to the phase 
problem' .  This approach has the advantage  of showing 
quite clearly the conditions under  which the relations 
are valid, and here our conclusions are not  identical  
with those of Kar le  & Haup tman .  The question of the 
extent  to which the relations can be used for the prac- 
t ical  determinat ion of crystal structures is more 
difficult  to answer, bu t  the approach given here 
throws some light on it. Some conclusions are also 
reached about  the conditions under  which a structure 
is uniquely  determined by its s tructure ampli tudes.  

2. R e s u l t s  f r o m  F o u r i e r  t r a n s f o r m  t h e o r y  

We consider a dis t r ibut ion ~ (r) consisting of N points 
of weights W1, . . . ,  WN at r l . . . r ~ ,  repeated by  an 
infinite lattice. Tha t  is, the distr ibut ion in one uni t  
cell is given by 

2¢ 

0(r) = ~7 W ~ 6 ( r - r j ) ,  (2.1) 
/ - -1  

where 6(r) is a Dirac function. We also define 

N 

F(h)  = ~ Wj exp [2~irj .  h ] ,  (2.2) 
j = l  

and we shah refer to Q(r) and F (h )  as Fourier  trans- 
forms of one another,  a relat ionship denoted by 

e(r) ~ F(h). 

(.Strictly speaking, it is the continuous structure 
factor which is the t ransform of ~(r).) We now state 
the following theorem: 

2 W / ~ ( r - r j )  ~- ~'l(h) 
J 

and 
W ~ ' d ( r - r j )  ~ P2(h), (2.3) 

] 
then 

.~ W/W~'~(r - r~)  ~ ( F l ( k ) F z ( h - k ) > k ,  
1 

where < >k denotes an average over an infinite range. 
I t  should be noted tha t  the points involved in the  th i rd  
relation are those which are common to the first two, 
since, if any  W' or W" is zero, a term disappears 
from the  lef t -hand side of the th i rd  relation. The 
proof of (2.3) is given in a later section. 

Two other useful results which are readi ly proved 
are that ,  with 

~v W j O ( r - r j )  ~ F ( h ) ,  

then 
.~ WiWj6(r-(r~-rj))  -~ ]F(h)] 2, (2.5) 
i , j  

o r  
W i W ~ d ( r - ( r ~ - r j ) )  ~- [F (h ) [9 -~ :  W~, (2.5a) 

and also 

~v (Wj cos 2 g H . r j ) ( ~ ( r - r j )  ~- ½ ( F ( h + H )  

t + F ( h - H ) ) .  (2.6) 

3. D e r i v a t i o n  of  s o m e  typ ica l  e q u a l i t i e s  

As an example  of the applicat ion of the results given 
in the last  section, we consider the derivat ion of certain 
equations given by  Kar le  & H a u p t m a n  (1957). These 
equations are wri t ten in terms of a quan t i ty  E(h) ,  
related to our F ( h )  by  

E(h)  = F ( h ) / ( ~  v W~)½, tha t  is, E(h)  = N-½F(h)  when 
J 

all W's are uni ty .  In  our notat ion these equations 
become 

F(h )  = <F(k)F(h-k)>k, (3.1) 

F (h )  = < ( F 2 ( k ) - N ) F ( h - 2 k ) > k ,  (3.2) 
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[F(h ) I2 -N = ( ( [F(k ) I2 -N) ( IF(h-k ) [~-N) )  k, (3.3) 

IF (h + H ) F  ( -  h + H ) F  ( - 2H) I c o s  ((~h+H n t- (~-h+H-~- (P--2H) 

= ½<(IF(k + H)I2-/V) ( IF(k-  H)I2-N) 
× (IF (h + k)[2-N)> k + (iF (h + H)[ ~ + IF ( h -  H)[ 2 
+ IF(2H)I 2 - 2 N ) ,  (3.4) 

where 
F(h)  = IF(h)[ exp [i~a ] . 

The first relation holds for both centrosymmetric and 
non-centrosymmetric structures, the second only for 
centrosymmetric and the third and fourth only for 
non-centre'symmetric structures. 

To derive (3.1) we put F l ( h  ) = F ~ ( h ) =  F(h)  in 
relation (2.3), giving 

Z W~(~(r-r~) ~ < F ( k ) F ( h - k ) )  k . (3.5) 
i 

Comparing this with the relation defining F(h)  itself, 

~Y: W j ~ ( r - r j ) ~ - F ( h ) ,  we see that  if all Wj = 1,  
i 

relation (3.1) follows immediately. A necessary and 
sufficient condition for the t ru th  of (3.1) is (aside 
from W = 1, and remembering tha t  < )k is an aver- 
age over an infinite range) 

ri--r~ # 0 .  (3.7) 

(We shall always take this to include the condition 
r ~ - r j  # t, where t is any lattice translation.) 

The basis of (3.2) may be understood by writing 
it as 

F(h)  = ( ( F 2 ( ½ k ) - N ) F ( h - k ) ) k  . (3.2a) 

Since the structure is centrosymmetric, r i - - - -  --r~v_i, 
and the Fourier transform of F2(h) will include peaks 
at  2r~; in fact 

F ~ ( h ) - N  ~ ~ W~ 6 ( r -2 r~)  +~v 2W~ W~6( r -  ( r t - r j ) ) ,  

(3.8) 

If  in the relation (2.3) we now take F l ( h  ) = F '2(½h)-N 
and F~(h) = F(h) ,  we see tha t  (3.2a) depends on the 
fact tha t  the transforms of F l ( h  ) and F2(h ) have 
common points at r~, . . . ,  r~v, and that  

< ( F ~ ( ½ k ) - N ) F ( h - k ) ) k ~  W~6(r- r~) .  (3.9) 
t 

Taking all W~ = 1, relation (3.2a) follows. The con- 
ditions for the validity of this result are those we have 
already met, together with 

2r~-  ( r ~ - r ~ )  4 0 .  (3.10) 

This last condition ensures tha t  there are no accidental 
coincidences of points in the second term of (3.8) 
with points in the first term. If in (3.10) we take 
m - - - N - n ,  we see tha t  it includes the condition 
2( r~- r~)  4= 0, and if we now take i = N - m ,  we see 
tha t  4r~ # 0 is also included. Remembering that  this 

is meant  to include 4ri 4= t, we see tha t  such special 
positions as (½, 0, 0), (¼, ¼, ~), etc. must not be oceu: 
pied. These conditions are all included in (3.10), or 
in the statement tha t  all the points 2r~ of the vector 
set are to be resolved from one another, and from 
points rn- r rn .  

The result (3.3) can be derived immediately by 
putt ing F ~ ( h ) =  F2(h ) = [F(h) I2 -N in (2-3). The 
conditions for exact validity are found to be (3-7), 
plus the condition. 

( r n - r m ) -  ( rv - rq)  ~ 0 ,  (3.11) 

or simply tha t  all points of the vector set are to be 
resolved from one another (and of equal weight). The 
condition deduced by Karle & Hauptman (1957, 
footnote to p. 156) is more restrictive, being 

A ( rn - rm)+B(rv - rq )  # O, (3.12) 

where A and B are any integers. As a check, we 
calculated values of IF I~-N for a one-dimensional 
structure with 

T 1 ----0, T2 ~ ~, r3 : ~6~ T4 : ~ "  

Condition (3.11) is satisfied, (3-12) is not, but  it was 
verified by numerical calculation tha t  (3"3) is valid. 

The derivation of relation (3.4) is given in Ap- 
pendix I, and it is shown that  it is valid provided tha t  

( r i - r ~ ) - { ( r n - r m ) -  (rp-rq)} # 0 .  (3.13) 

In a discussion of the probability of the correctness 
of certain statistical relations between structure fac- 
tors, Klug (1958) found it useful to define an 'order'  
for each relation. On this definition, (3.1), (3.2), (3"3) 
and (3.4) are respectively of order 3, 4, 5 and 7. We 
see from conditions (3.7), (3.10), (3.11) and (3.13) 
that  the order of each equality is one more than the 
number of independent atomic positions involved in 
each condition. 

4 .  T h e  e f f e c t  o f  a v e r a g i n g  o v e r  a l i m i t e d  r a n g e  

In practice the range of k over which averages can 
be taken is restricted. From Fig. 1 we see tha t  the 
condition for both vectors k and h - k  to lie inside 
limiting spheres of radius S 0, is that  k should lie inside 
tSe vok~me whose projection is shaded in the diagram. 
No~v 

( F l ( k ) F e ( h - k ) )  ~ = ((..~Y W~ exp [27dr~.k]) 

× ( 2 W ~ ' e x p  [2zdr~ . (h-k) ] ) )  k , (4-1) 
J 

where ( ) ~  denotes an average over this limited range 
of k. Transferring the origin from 0 b y ' a  distance ½h, 
and introducing a new coordinate in reciprocal space, 
u = k - ½ h  (see Fig. 1), we find, since k = ½h+u and 
h -  k = ½ h -  u, that  
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Fig. 1. The two spheres in the  d iagram each of radius  S0, 
have  thei r  centres  separa ted  by  a dis tance h.  The condi t ion 
t h a t  bo th  Ik[ and lh - -k l  should be less t h a n  S 0 is t h a t  k 
should lie inside the  vo lume c o m m o n  to the  two spheres. 

<Fl(k)F2(h-k)>k  = < 2  W/W;' exp [27drj.h])u 
] 

+<.~ W~W~' exp [:~i(r,+r~). hi exp [2:~i( r , - r j ) .u]>~,  

~#J (4.2) 
tha t  is, 

! t t  

(F~(k)Fg(h-k)>~ = 2 WjW i exp [2z i r j .h]  
1 

+ 2  W~W ' ' ~  ~ exp [~i(r~+r~). h](exp [27~i(r/-r~) . u]>'. . 

i+~ (4.3) 

For  an infinite range of u, the second term on the 
right vanishes and we have the result given earlier as 
(2.3). When the range of u is finite, we have an ad- 
ditional contribution from every point ½(r,+r~), the 
magnitude of the contribution depending on ( r , - r~) ,  
and decreasing as this separation increases. This con- 
tribution depends explicitly on 

f(r~--r~) = <exp [2xd(r~--r~).u]>~ 

= <C(u) exp [2:~i(r~-r~).u]>u, (4.4) 

where C ( u ) =  1 inside the shaded region of Fig. 1, 
but  is zero outside. Relation (4.4) will be seen to 
express the fact that  f ( r , - r ¢ )  is the Fourier transform 
of the function C(u). Now this function has a width 
in any direction of about S O , so by the well known 
reciprocal relation between the widths of a function 
and its transform, f ( r , - r ¢ )  must fall nearly to zero 
in a distance of about S0 -~. This can be confirmed for 
small values of h, for then f ( r , - r ~ )  is given explicitly 
by 

f ( r , - r j )  

3 (sin 2 ~ ] r t - r j [ S 0 - 2 ~ ] r i - r j l S 0  cos 2~lr~-r~[S0) 

(2~[ri-rj]S0) a 
(4.5) 

For greater values of h, f ( r i - r j )  spreads out and is 
no longer spherically-symmetrical, but for h < S O it 
will not differ greatly from the result given as (4.5). 

We now apply this result to the case F l ( h ) =  
F~(h) = F(h) ,  taking all Wj = 1. We find, using the  
above results, tha t  

<F (k )E(h -k )>~  

= F(h)+f l_ : f ( r , - r~)  exp [ z i ( r , + r ~ ) . h ] .  (4.6) 
i4=j 

The condition for the second term to vanish is tha t  all 
f ( r l - r ~ )  should be negligible, which will be true if 

] r , - r j [  ~ S~ 1 . (4.7) 

This replaces the condition ( r , - r j )  4= 0. I t  is readily 
shown tha t  a corresponding change has to be made to 
other conditions such as (3.11), which becomes 
I ( r n - r ~ ) - ( r v - r q )  I ~ So 1, for example. 

The interpretation of condition (4.7) in terms of 
functions in crystal, as opposed to reciprocal, space is 
evident. When the range of h is infinite, each atom in 
an electron-density map whose Fourier coefficients are 
F ' s  as defined in § 2, is represented by a t-function, 
and ( r , - r j )  # 0 requires the ~-functions not to 
coincide. When the range of h is restricted to a sphere 
of radius S 0, each atom is represented by a peak of 
width ~ S~ 1, and (4.7) requires such peaks to be 
resolved from one another. We therefore come to 
appreciate that ,  for example, the exact validity of (3.3) 
depends on the complete resolution of all peaks in the 
Patterson function. 

5. Some  further equality relations 

By successive applications of (3.1) it may  be shown 
tha t  

F(h)  = <F(k)F(1-k)F(m-1) . . .F(h-m)>k, l  ..... m.  
(5"1) 

There are similar results corresponding to (3-2) etc. 
From the results (2.5a) and (I.9) it is readily shown 

tha t  

IF(h) [~-N = 2 ( N -  1)< ([F(k)]2-N) ( [F(h-k) [2-N)~>k • 
(5.2) 

From (I.5), (I.6) and (I.10) we find tha t  

[F (h+  H ) F ( -  h + H ) F ( -  2H) 
X [COS (~h+H+~9--h+H-at-~0--2H)- IF(2H)[ 2 

= ~ ( { ( ] F ( k + H ) I ~ - N ) ( [ F ( k - H ) I 2 - N ) -  ( 2 N - 8 )  

x ([F(k+H)I2+iF(k-H)I2-2N)} 
× { [ F ( h - k ) 1 2 - N } .  (5.3) 

Equal i ty  relations can be found even when the atoms 
of the structure are unequal. For  example, corre- 
sponding to (3-2), 

< E ( k ) F ( l - k ) F ( h - 1 ) > k , ,  
= <(F~(k)-z~W~)(F(h-2k))>k.  (5.4) 

Suppose the atoms of a structure are equal, the 
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structure is centrosymmetric  and the position of any  
one atom is known, say r l ,  then it can be shown tha t  

F (h )  = -~<(F~(k ) -N+4) (F2(h-k ) -N+4)  
× cos 2~rr 1. ( h - 2 k ) >  k . (5.5) 

Since this result  holds for any rj,  it  follows tha t  

1 
F(h)  = -~--~<(F~(k)-N+4)(FP(h-k)-N+4) 

× F ( h - 2 k ) > k .  (5.6) 

If  the structure is non-centrosymmetric ,  then, pro- 
vided tha t  the origin is chosen to coincide with an 
atomic position, 

F (h )  = <([F(k)12-N+l)F(h-k)>k " (5.7) 

If  the origin is chosen midway  between atoms 1 and 2, 
and the separation r l - r  2 = 2r  x is known, it can be 
shown tha t  

2(IF(h)lcos ~h--COS 4 g r  1. h) 

= < ( ] F ( k ) I 2 - N +  1 ) ( ] F ( h - k ) 1 2 - N +  1)cos 4~rx .k>k.  

(5.8) 

the coordinate of a th i rd  atom relative to this  
origin, r3, is known it can be shown tha t  

F (h )  = 2<(IF(k)] cos (pk-- COS 4~r  1. k) 

× ( I F ( h - k ) l ~ - N ÷ l ) e x p  [2~ir  3. ( h - k ) ] > k .  (5.9) 

Proofs of the results from (5.5) onwards will not  be 
given;  they  have at most a curiosity value. Their  
physical  basis will be pointed out in the next  section. 

6. T h e  P a t t e r s o n - f u n c t i o n  aspec t  of 
s truc ture  d e t e r m i n a t i o n  

I t  was shown by  Wrinch  (1939) tha t  in general a set 
of points  can be recovered from its vector set. We shall  
consider first in this  section a structure (set of points) 
whose space group is P1 ;  the atoms m a y  be unequal  
and we need not  know their  weights or the value of N. 
We suppose, however, tha t  all points of the vector 
set are resolved, 

( r n - r m ) - - ( r v - r q )  # 0 .  (6.1) 

In  the vector set we look for three points at vl,  v~. 
and v a such tha t  v 3 = v 2 - v  x. The identif ication of 
three such points, with their  weights, fixes the weights 
and  relative coordinates of three points of the struc- 
ture, or of its enant iomorph,  for we can assume tha t  

v 1 = ri--r~, v 2 = r~- r~ ,  V 3 = r j - r ~ .  

An incorrect identif ication is impossible if (6.1), and 
the  following condition, are always satisfied: 

( r ~ - r ¢ ) - { ( r n - r m ) - ( r v - r ¢ ) }  # 0 .  (6.2) 

These three points, in their  correct relative positions, 
are then moved over the vector set unt i l  a tr iple 
coincidence is found with three points of the vector 
set whose weights are in the same ratio as those of the 
first three of the structure. This serves to fix the 
weight and relative position of a fourth point  of the 
structure. A false indicat ion is not possible if con- 
ditions (6.1) and (6.2) are satisfied. The coincidence- 
seeking process is then repeated with these four points 
unti l  a f if th has been found, and so on. This process 
is essentially the same as was described by Wrinch 
(1939) and Buerger (1950, 1951). I t  is ment ioned here 
in order to show tha t  the conditions which ensure 
success for the method,  are the same as those given in 
§ 3, and which ensure the success of phase-determining 
relations. The considerations of the present section 
show tha t  these geometrical conditions are the same 
whether the points (atoms) are equal in weight or not. 
In  part icular ,  if conditions (6.1) and (6.2) are satisfied, 
a structure whose space group is P1 (whether com- 
posed of equal atoms or not) can have no homometr ic  
mate  other t han  its enantiomorph.  These conditions 
are contained in the one deduced by  Karle  & Haupt-  
man  (1957), but  are less restrictive. While  (6.1) and 
(6.2) provide sufficient conditions to exclude a homo- 
metric solution, they  are clearly not  necessary con- 
ditions. Neither  will their  occasional failure be a 
serious bar  to the determinat ion of a crystal s tructure 
by  a routine procedure. This is clear from the point  of 
view of Pat terson-function methods when we re- 
member  tha t  there are so m a n y  ways in which the 
first three points,  ri,  r~, r~, of the above method can 
be chosen. Even  if they  are at first incorrectly iden- 
tiffed because of a failure of (6.2), the coincidence- 
seeking process is not  l ikely to proceed much beyond 
this stage, and a fresh start  would be made with three 
other points. The real l imitat ion of course lies in the 
contrast between a vector set of points, in terms of 
which the discussion has been conducted, and the 
Pat terson function which can be obtained in practice. 
This is s imply another aspect of the point  discussed 
in §4. 

When the space group is P1,  the structure can be 
recovered from its vector set by the 'single super- 
position method '  of Clastre & Gay (1950a, b). For the 
process to be free from ambigui ty ,  condition (6.1) is 
required, together with 

2 r t - -{ ( rn - - rm) -  (rv--rq)} # 0 .  (6-3) 

This method of Clastre & Gay, expressed in terms of 
operations in reciprocal space, leads to (5-5). The same 
process, applied in a si tuat ion where the space group 
is P1,  leads to (5.8). Their 'double superposition 
method '  for the determination,  from its vector set, 
of a structure whose space group is P1, leads to (5-9). 

A structure whose space group is P1, and for which 
conditions (6.1) and (6.3) are satisfied, can have no 
homometr ic  mate.  
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7. The amount  of data required for direct 
structure analysis 

For simplicity the discussion in this section will refer 
to a structure whose space group is P1, and which is 
composed of equal atoms. The conclusions, however, 
are quite general in their application. Suppose the 
structure is to be determined using equality relations 
such as 

F(2h) = 2 ( F 2 ( h ) - N ) - < ( F e ( k ) - N ) ( F g ( h - k ) - N ) > k  • 
(7.1) 

to determine certain signs from measured intensities, 
followed by the use of 

F(h) = < ( F ~ ( k ) - N ) F ( h - 2 k ) ) k  (7.2) 
and 

F(h) = <F(k )F (h -k )>k .  (7.3) 

The relation (7.1) has been derived in terms of the 
Fourier transforms of both sides of the equation in an 
earlier paper (Cochran, 1954); it is readily shown to 
be exact provided that  

12r~-(rn-rm)] ~ S~ ~ , 

that  is, it requires certain peaks in the Patterson 
function (those between atoms related by the centre 
of symmetry) to be resolved from the others. 

If the data available are contained within a limiting 
sphere of radius So, the number M of structure 
amplitudes (magnitudes of structure factors) is given 
by 

M = (4/3)7tS~)V, (7.4) 

where V is the unit-cell volume. The width of a peak 
in the Patterson function (whose coefficients are values 
of IF[ ~, as defined in this paper) is then of the order 
So 1, and for maxima to be even approximately re- 
solved from one another we require (since there are 
approximately N 2 separate peaks) 

V/N 2 'm So a, (7"5) 

which, combined with (7.4), requires 

M ~ (4/3)~NL (7.6) 

Relations of higher order require an amount of data 
involving a higher power of N. This provides us with 
an estimate of the data required to determine a struc- 
ture by a routine procedure, whether based on 
Patterson-function methods or sign-determining rela- 
tions makes no difference. This conclusion, based on 
(7.6), has also been reached by Vaughan (private 
communication), to whom I owe the idea. 

The conclusion appears at first to contradict the 
result of Hauptman & Karle (1950), who showed that  
the problem of determining 3N atomic coordinates is 
in general completely determinate when M = 3 (N-1 )  
independent structure amplitudes are known. There 
is, however, no contradiction; relations of the lowest 

order (which is three) require the minimum amount 
of data. For example, relation (7.3) is vahd as soon as 

Ir~-rjl ~ S0 -1, (7.7) 

it merely requires the atoms to be resolved from one 
another. This is the case as soon as V / N  ~ S~ a (7.8), 
i.e., when 

M ~ (4/3)~N. (7-9) 

This is close to the Hauptman & Karle value. We 
therefore conclude that  if a structure is to be deter- 
mined from the minimum amount of data, only rela- 
tions of lowest order (see § 3) can be used. These 
depend on relations between the electron density and 
powers of the electron density, for example (7.3) 
expresses a relation between Q and ~2, (5.1) expresses 
a relation between ~ and any power of Q. I t  has been 
shown by Woolfson (1958) that  similar relations can 
be found when the atoms are unequal. Those equalities 
which give signs of structure factors directly from 
intensities inevitably involve relations between ~ and 
the Patterson function P, or between Q and p2, or 
between 0 and the product ~P etc. For their exact 
validity thcy therefore require more than the minimum 
amount of data. Unfortunately there is no way as yet 
in which an equation such as (7.3) can be solved by a 
routine procedure, although for fairly simple struc- 
tures something approaching this can be done (Sayre, 
1952; Cochran & Penfold, 1952). 

The number of X-ray intensities measurable in 
practice increases roughly in proportion to N, since 
V is approximately proportional to N. For organic 
compounds, for example, one finds (neglecting hy- 
drogens) that  V ~- 12N, where V is in /~a. The range 
of measurement seldom extends as far as S o = 2 A -1. 
I t  may therefore be concluded that  the limit of struc- 
ture determination by Patterson-function methods, or 
by methods based on equality relations of order 
greater than three, is reached when 

(4/3):r(2)a× 12N ~ (4/3):~N ~, or N ~ 100. 

The situation is of course completely altered if a few 
atoms are of much greater weight than the others, 
as the Patterson function may then contain recogniz- 
able features. The estimates we have made are if 
anything too generous, and the figure N = 100 may 
well be too great by a factor of four when the atoms 
are equal, or nearly so. 

A P P E N D I X  I 

Proof of the relation 

] F ( h + H ) F ( - h + H ) F ( - 2 H ) ]  cos (~Oh+H+ ~0--h+H+ qg--2H) 
= ½ < ( I F ( k + H ) I 2 - N ) ( I F ( k - H ) I 2 - N )  

× (IF(h+K)Im--N)>k 
+(IF(h+H)12+IF(h-H) I~+]F(2H)I2 -2N) .  (I-l) 

We write P for the quantity occurring on the left- 
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hand side. We regard H as a constant, and note tha t  
since P is a structure invariant we can choose an 
origin so tha t  ~92H ~ 0. F(2H) is then real and posi- 
tive, and we have 

P = F ( 2 H ) I F ( - h + H ) F ( h + H ) I c o s  ( ~ 9 _ h + H q t - ~ 0 h + I . i )  . 

(1.2) 
We then make use of the general result 

½(~+~*~*)  = I ~ F ~ l c o s  (~+~) 
to obtain 

P = ½F (2H) (F* ( h -  H)F  (h + H) + F ( h -  H)F* (h + H)}, 
or 

P = ½ F ( 2 H ) { [ F ( h + H ) + F ( h - H ) [  ~. 

- (]F(h+H)[~+ [ F ( h -  H)[2)). (I.3) 

Using general results given earlier, and taking the 
atoms to be equal from the outset, we find that  

[F (h + H) +.F ( h -  H) I~-2  (N +.F (2H) ) +_ 

4 ~ (cos 2~rH. r~ cos 2zH.  r¢)~( r -  (r~-r¢)),  (I.4) 
i#? 

and that  

[F(h+H)lu+ I F ( h - H ) I ~ - 2 N  

2 ~7 (cos 2~rH. ( r ~ - r i ) 6 ( r - ( r ~ - r ¢ ) ) .  (I.5) 

Multiplying both sides of (I.4) and (I.5) by ½F(2H), 
subtracting one from the other, and making use of 
(I.3), we obtain 

P - F ~ ( 2 H )  ~ ~ (F(2H) cos 2~rH. (r~ +r¢)) 

~ ( r -  (r~-r~-)), (1"6) 

where P is given by (I.3) or (I.2). 
Next we consider the function 

2(IF(h+H)[  ~ - N ) ( I F ( h - H ) I  u - N )  

= {( IF(h+H)I~-N)  + ( ]F (h -H) I~-N)}  ~. 

- { (IF (h + H)] ~-  N) ~ + (IF ( h -  H)[ ~-  N) ~) 
= Q - R ,  say .  (I.7) 

:Both terms Q and R are obviously related to 
(]F(h)]2-N)2; in fact the transforms of all three 
consist of ~-functions at the same points 

r = (rn- -rm)- - (rv- -rq) ,  (I.8) 

which are the points obtained by forming the vector 
set of points ri, i = 1, . . . ,  N, subtracting the peak 
at  the origin, and then forming in turn the vector set 
of this vector set. Certain points of this vector-vector 
set coincide with points r , - r ~  of the vector set, for 
example in (I.8) take m = q, n = i and p = j.  As we 
shall see later, it is with these points only that  we are 
concerned. 

I t  is found tha t  

(IF(h)I~-N) ~ ~ ~" 2 ( N - 2 ) 6 ( r -  (r~-r¢)) 

+ other terms, not at points of the vector set. (I-9) 

Similarly, 

Q ~- ~ (4F(2H) cos 2zH.  (ri+r¢) 

+ ( 4 N -  16) cos 2gH. (r~-r~)) 5 ( r -  ( r t - r~))  
+ other t e rms ,  

and 
(I.10) 

R ~ .~ 4 ( N - 2 )  cos 2zH.  ( r i - r j ) 6 ( r -  ( r~-r j ))  
i4=i 

+ other t e rms ,  (I-11) 

so that,  subtracting R from Q and multiplying by k, 

½ ([F(h + H)[ 2 -  N ) ( [ F ( h - H ) I ~ . - N )  ~ _,y (F(2H) 

× cos 2:~H. ( r i + r ~ ) - 2  cos 2:rH. (r~-r~)) 

× (5(r-  ( r i - r~))  + terms not at ( r~-r j )  . (1.12) 

Now we also have 

[F(h)I2-N ~ ~ O ( r - ( r ~ - r j ) ) ,  
i#] 

with no other t e rms .  (I-13) 

Therefore, from our central theorem (2.3) 

½<(IF(k+H)I~-N)( IF(k-H)I  ~ - N ) ( l F ( k - h ) [  ~.-N)>k 
~7 (F(2H) cos 2~H. ( r , + r ~ ) - 2  cos 2~rH. ( r , - r¢) )  
i4=] 

× ~ ( r -  ( r i - r~ ) ) .  (1.14) 

The conditions for this result to be rigorously true are, 
first that  (I.13) should be correct, which, as before 
requires 

rn--rm # 0 (n, m different),  
( r n - - r m ) - ( r v - r q )  # 0 ,  (n, m, p, q all different), 

and tha t  no point of the vector-vector set should 
accidentally coincide with a point of the vector set, i.e. 

(r i - -r j ) - -{  (rn--rm)--(rv--rq)} =t:: 0 

(i, j ,  n, m, p, q, all different).  (1.15) 

From (I.14), and making use of (I-5), we have 

½< ([F(k + H ) i 2 - N ) ( I F ( k - H ) I ~ - N ) ( I F ( h  + k) [ 2 -  N)>k 

±({F(h- t -H) I~- t - IF(h-H)I~-2N ~- Z,  (F(2 H) 

× cos 2~rH. ( r~+r¢) )6( r -  ( r i - r ¢ ) ) .  (I.16) 

But from (I.6), the right-hand side of (1.16) is also 
the transform of P - F 2 ( 2 H ) .  Hence, on rearranging 
terms, we have proved (I-l). The conditions for the 
t ruth  of (I.1) are therefore those given as (I.15). 
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Extinction Effects in Neutron Scatterint~ from Single Magnetic Crystals* 
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Results arising from the treatment  of magnetic scattering of neutrons, taking due account of the 
possibility of polarization of the neutron beam, indicate that  the usual expressiorLs for primary 
and secondary extinction must be modified in certain cases. Extinction, particularly primary 
extinction, will be generally more severe for reflections which have both nuclear and magnetic 
contributions than for either pure nuclear or pure magnetic reflections. Formulas and curves are 
presented for primary and secondary extinction corrections which are applicable to both mag- 
netized and unmagnetized ferromagnetic or aatiferromagnetic crystals. Some of the results obtained 
may be conveniently used to determine relative amounts of pr imary and secondary extinction, 
and consequently both mosaic block size and angular distribution. ~¢Iany of the calculations are of 
interest in predicting the effects of extinction on experiments designed either to produce or use 
polarized neutron beams. 

The precession of the neutron polarization axis about the magnetic axis can affect the reflected 
intensity if extinction is severe. This effect is discussed briefly and is shown to be serious only for 
magnetized crystals. 

The appendix discusses the necessary changes in the scattering formulas if all the spins in the 
unit cell do not lie along a unique magnetic axis. 

In troduct ion  

In  a recent  paper  (Hamilton,  1957) the au thor  has  
discussed secondary extinction corrections for crystals 
of a rb i t r a ry  geometrical  cross-section. In  the  example 
which was chosen to i l lustrate some of the  points 
discussed in t h a t  p a p e r - - a  synthet ic  single crystal  of 
magnet i te  which showed par t icular ly  severe extinction 
- - i t  was noted t h a t  several of the  reflections which 
had  large magnet ic  contributions did not  give as good 
a fit  to the  extinction curves as did the pure nuclear 
reflections. An empirical ext inct ion curve was found 
to give a sa t isfactory fit  to the observed intensities of 
the  nuclear  reflections, but  the intensities of m a n y  of 
the  mixed reflections were considerably lower t han  
this curve would predict.  This lowered intensi ty  could 
not  be accounted for by  any  reasonable changes in 
the  paramete rs  describing the magnetic  s t ructure,  nor 
in the  form factor  and sa tura t ion  curves. Pre l iminary  
considerations indicated t ha t  this behavior  could be 
explained by  a combinat ion of polarization and ex- 

* Research performed under the auspices of the U.S. 
Atomic Energy Commission. 

t inction effects, and the  present  paper  is a detailed 
elaborat ion of t h a t  point  of view. 

Following Halpern  & Johnson  (1939), we m a y  write 
the wave funct ion for the incident neut ron beam as 

V2o = (2~Mo/hk)½ exp [ i k . r ] z s ,  (1) 

where k is the  wave vector 2reP/h with P the  neut ron 
momentum,  r is a position vector, M 0 is the  neut ron 
mass, and Z8 is the  neutron spin function. The scat- 
tered wave from a single oriented magnet ic  ion m a y  
then be represented by 

Y~H = (2zcMo/hk) ½r-1 exp [ikr](b+pq.s)z~ , (2) 

provided t h a t  there is no change in the spin s ta te  of 
the scat ter ing ion. The nuclear and magnetic  scat- 
tering ampli tudes are given by b and p respectively 
with p defined as 

p = (e2rnS/mc~)f. (3) 

Here 7n is the neutron magnet ic  moment  in nuclear  
magnetons,  S is the  spin of the  scat ter ing ion, m is 
the mass of the  electron, f is a form factor,  and c and e 


